Skip to content

Note: Output is not generated for this example (to save resources on GitHub).

Rayleigh-Taylor instability in 2D

Two fluids with different temperatures start mixing.

julia
using CairoMakie
using IncompressibleNavierStokes

Hardware

julia
backend = CPU()

# using CUDA, CUDSS
# backend = CUDABackend()

Precision

julia
T = Float64

Output directory

julia
outdir = joinpath(@__DIR__, "output", "RayleighTaylor3D")

Temperature equation

julia
temperature = temperature_equation(;
    Pr = T(0.71),
    Ra = T(1e6),
    Ge = T(1.0),
    dodissipation = true,
    boundary_conditions = (
        (SymmetricBC(), SymmetricBC()),
        (SymmetricBC(), SymmetricBC()),
        (SymmetricBC(), SymmetricBC()),
    ),
    gdir = 3,
    nondim_type = 1,
)

Setup

julia
n = 80
x = LinRange(T(0), T(1), n + 1), LinRange(T(0), T(1), n + 1), LinRange(T(0), T(2), 2n + 1)
setup = Setup(;
    x,
    boundary_conditions = (
        (DirichletBC(), DirichletBC()),
        (DirichletBC(), DirichletBC()),
        (DirichletBC(), DirichletBC()),
    ),
    Re = 1 / temperature.α1,
    temperature,
    backend,
);
nothing #hide

This will factorize the Laplace matrix

julia
@time psolver = psolver_direct(setup)

Initial conditions

julia
ustart = velocityfield(setup, (dim, x, y, z) -> zero(x); psolver);
tempstart = temperaturefield(setup, (x, y, z) -> (1 + sinpi(x / 20) * sinpi(y) > z));

fieldplot(
    (; u = ustart, temp = tempstart, t = T(0));
    # state;
    setup,
    levels = LinRange{T}(0.8, 1, 5),
    # levels = LinRange(-T(5), T(1), 10),
    # fieldname = :eig2field,
    fieldname = :temperature,
    size = (400, 600),
)

Solve equation

julia
state, outputs = solve_unsteady(;
    setup,
    ustart,
    tempstart,
    tlims = (T(0), T(40)),
    Δt = T(1e-2),
    psolver,
    processors = (;
        # anim = animator(;
        #     path = "$outdir/RT3D.mp4",
        rtp = realtimeplotter(;
            setup,
            nupdate = 20,
            fieldname = :eig2field,
            levels = LinRange(-T(5), T(1), 10),
            # fieldname = :temperature,
            # levels = LinRange{T}(0, 1, 10),
            size = (400, 600),
        ),
        # vtk = vtk_writer(;
        #     setup,
        #     nupdate = 10,
        #     dir = outdir,
        #     fieldnames = (:velocity, :pressure, :temperature),
        #     psolver,
        # ),
        log = timelogger(; nupdate = 400),
    ),
);
nothing #hide

Check distribution of vortex structures for choosing plot levels

julia
field = IncompressibleNavierStokes.eig2field(state.u, setup)[setup.grid.Ip]
hist(vec(Array(log.(max.(eps(T), .-field)))))

Plot temperature field

julia
fieldplot(state; setup, fieldname = :temperature)

Copy-pasteable code

Below is the full code for this example stripped of comments and output.

julia
using GLMakie
using IncompressibleNavierStokes

backend = CPU()

# using CUDA, CUDSS
# backend = CUDABackend()

T = Float64

outdir = joinpath(@__DIR__, "output", "RayleighTaylor3D")

temperature = temperature_equation(;
    Pr = T(0.71),
    Ra = T(1e6),
    Ge = T(1.0),
    dodissipation = true,
    boundary_conditions = (
        (SymmetricBC(), SymmetricBC()),
        (SymmetricBC(), SymmetricBC()),
        (SymmetricBC(), SymmetricBC()),
    ),
    gdir = 3,
    nondim_type = 1,
)

n = 80
x = LinRange(T(0), T(1), n + 1), LinRange(T(0), T(1), n + 1), LinRange(T(0), T(2), 2n + 1)
setup = Setup(;
    x,
    boundary_conditions = (
        (DirichletBC(), DirichletBC()),
        (DirichletBC(), DirichletBC()),
        (DirichletBC(), DirichletBC()),
    ),
    Re = 1 / temperature.α1,
    temperature,
    backend,
);

@time psolver = psolver_direct(setup)

ustart = velocityfield(setup, (dim, x, y, z) -> zero(x); psolver);
tempstart = temperaturefield(setup, (x, y, z) -> (1 + sinpi(x / 20) * sinpi(y) > z));

fieldplot(
    (; u = ustart, temp = tempstart, t = T(0));
    # state;
    setup,
    levels = LinRange{T}(0.8, 1, 5),
    # levels = LinRange(-T(5), T(1), 10),
    # fieldname = :eig2field,
    fieldname = :temperature,
    size = (400, 600),
)

state, outputs = solve_unsteady(;
    setup,
    ustart,
    tempstart,
    tlims = (T(0), T(40)),
    Δt = T(1e-2),
    psolver,
    processors = (;
        # anim = animator(;
        #     path = "$outdir/RT3D.mp4",
        rtp = realtimeplotter(;
            setup,
            nupdate = 20,
            fieldname = :eig2field,
            levels = LinRange(-T(5), T(1), 10),
            # fieldname = :temperature,
            # levels = LinRange{T}(0, 1, 10),
            size = (400, 600),
        ),
        # vtk = vtk_writer(;
        #     setup,
        #     nupdate = 10,
        #     dir = outdir,
        #     fieldnames = (:velocity, :pressure, :temperature),
        #     psolver,
        # ),
        log = timelogger(; nupdate = 400),
    ),
);

field = IncompressibleNavierStokes.eig2field(state.u, setup)[setup.grid.Ip]
hist(vec(Array(log.(max.(eps(T), .-field)))))

fieldplot(state; setup, fieldname = :temperature)

This page was generated using Literate.jl.