Note: Output is not generated for this example (to save resources on GitHub).
Taylor-Green vortex - 3D
In this example we consider the Taylor-Green vortex.
julia
using CairoMakie
using IncompressibleNavierStokes
Floating point precision
julia
T = Float64
Array type
Running in 3D is heavier than in 2D. If you are running this on a CPU, consider using multiple threads by starting Julia with julia -t auto
, or add -t auto
to # the julia.additionalArgs
# setting in VSCode.
julia
ArrayType = Array
# using CUDA; ArrayType = CuArray
# using AMDGPU; ArrayType = ROCArray
# using oneAPI; ArrayType = oneArray
# using Metal; ArrayType = MtlArray
Setup
julia
n = 32
r = range(T(0), T(1), n + 1)
setup = Setup(; x = (r, r, r), Re = T(1e3), ArrayType);
psolver = psolver_spectral(setup);
nothing #hide
Initial conditions
julia
U(dim, x, y, z) =
if dim == 1
sinpi(2x) * cospi(2y) * sinpi(2z) / 2
elseif dim == 2
-cospi(2x) * sinpi(2y) * sinpi(2z) / 2
else
zero(x)
end
ustart = velocityfield(setup, U, psolver);
nothing #hide
Solve unsteady problem
julia
state, outputs = solve_unsteady(;
setup,
ustart,
tlims = (T(0), T(1.0)),
Δt = T(1e-3),
processors = (
# rtp = realtimeplotter(; setup, plot = fieldplot, nupdate = 10),
ehist = realtimeplotter(;
setup,
plot = energy_history_plot,
nupdate = 1,
displayfig = false,
),
espec = realtimeplotter(; setup, plot = energy_spectrum_plot, nupdate = 10),
# anim = animator(; setup, path = "$outdir/solution.mkv", nupdate = 20),
# vtk = vtk_writer(; setup, nupdate = 10, dir = outdir, filename = "solution"),
log = timelogger(; nupdate = 100),
),
psolver,
);
nothing #hide
Post-process
Energy history
julia
outputs.ehist
Energy spectrum
julia
outputs.espec
This page was generated using Literate.jl.