Note: Output is not generated for this example (to save resources on GitHub).
Unsteady actuator case - 2D
In this example, an unsteady inlet velocity profile at encounters a wind turbine blade in a wall-less domain. The blade is modeled as a uniform body force on a thin rectangle.
julia
using CairoMakie
using IncompressibleNavierStokes
using Random
Output directory
julia
outdir = joinpath(@__DIR__, "output", "MultiActuator")
Floating point precision
julia
T = Float64
Array type
julia
ArrayType = Array
# using CUDA; ArrayType = CuArray
# using AMDGPU; ArrayType = ROCArray
# using oneAPI; ArrayType = oneArray
# using Metal; ArrayType = MtlArray
Boundary conditions
julia
boundary_conditions = (
# x left, x right
(
DirichletBC((dim, x, y, t) -> sinpi(sinpi(t / 6) / 6 + one(x) / 2 * (dim == 1))),
PressureBC(),
),
# y rear, y front
(PressureBC(), PressureBC()),
)
Actuator body force: A thrust coefficient Cₜ
distributed over a thin rectangle
julia
create_bodyforce(; xc, yc, D, δ, C) =
(dim, x, y, t) ->
dim == 1 && abs(x - xc) ≤ δ / 2 && abs(y - yc) ≤ D / 2 ? -C / (D * δ) : zero(x)
create_manyforce(forces...) = function (dim, x, y, t)
out = zero(x)
for f in forces
out += f(dim, x, y, t)
end
out
end
disk = (; D = T(1), δ = T(0.11), C = T(0.2))
bodyforce = create_manyforce(
create_bodyforce(; xc = T(2), yc = T(0), disk...),
create_bodyforce(; xc = T(4), yc = T(0.7), disk...),
create_bodyforce(; xc = T(6.4), yc = T(-1), disk...),
)
A 2D grid is a Cartesian product of two vectors
julia
n = 50
x = LinRange(T(0), T(10), 5n + 1), LinRange(-T(2), T(2), 2n + 1)
plotgrid(x...; figure = (; size = (600, 300)))
Build setup and assemble operators
julia
setup = Setup(;
x,
Re = T(1000),
boundary_conditions,
bodyforce,
issteadybodyforce = true,
ArrayType,
);
nothing #hide
Initial conditions (extend inflow)
julia
ustart = velocityfield(setup, (dim, x, y) -> dim == 1 ? one(x) : zero(x));
t = T(0)
boxes = map(bodyforce.forces) do (; xc, yc, D, δ)
[
Point2f(xc - δ / 2, yc + D / 2),
Point2f(xc - δ / 2, yc - D / 2),
Point2f(xc + δ / 2, yc - D / 2),
Point2f(xc + δ / 2, yc + D / 2),
Point2f(xc - δ / 2, yc + D / 2),
]
end
box = boxes[1]
Solve unsteady problem
julia
state, outputs = solve_unsteady(;
setup,
ustart,
tlims = (T(0), T(12)),
method = RKMethods.RK44P2(),
processors = (
rtp = realtimeplotter(;
setup,
# plot = fieldplot,
# fieldname = :velocitynorm,
# fieldname = :pressure,
size = (600, 300),
nupdate = 1,
),
boxplotter = processor() do state
for box in boxes
lines!(current_axis(), box; color = :red)
end
end,
# ehist = realtimeplotter(; setup, plot = energy_history_plot, nupdate = 1),
# espec = realtimeplotter(; setup, plot = energy_spectrum_plot, nupdate = 1),
# anim = animator(; setup, path = "$outdir/vorticity.mkv", nupdate = 20),
# vtk = vtk_writer(; setup, nupdate = 10, dir = "$outdir", filename = "solution"),
# field = fieldsaver(; setup, nupdate = 10),
log = timelogger(; nupdate = 100),
),
);
nothing #hide
Post-process
We may visualize or export the computed fields (u, p)
.
Export to VTK
julia
save_vtk(state; setup, filename = joinpath(outdir, "solution"))
Plot pressure
julia
fig = fieldplot(state; setup, size = (600, 300), fieldname = :pressure)
lines!.(boxes; color = :red);
fig
Plot velocity
julia
fig = fieldplot(state; setup, size = (600, 300), fieldname = :velocitynorm)
lines!.(boxes; color = :red);
fig
Plot vorticity
julia
fig = fieldplot(state; setup, size = (600, 300), fieldname = :vorticity)
lines!.(boxes; color = :red);
fig
This page was generated using Literate.jl.