Neural closure models
NeuralClosure
These features are experimental, and require cloning IncompressibleNavierStokes from GitHub:
git clone https://github.com/agdestein/IncompressibleNavierStokes.jl
cd IncompressibleNavierStokes/lib/NeuralClosure
Large eddy simulation, a closure model is required. With IncompressibleNavierStokes, a neural closure model can be trained on filtered DNS data. The discrete DNS equations are given by
Applying a spatial filter
where the discretizations
NeuralClosure module
IncompressibleNavierStokes provides a NeuralClosure module.
NeuralClosure.collocate Method
collocate(u) -> Any
Interpolate velocity components to volume centers.
NeuralClosure.create_closure Method
create_closure(layers...; rng)
Create neural closure model from layers.
NeuralClosure.decollocate Method
decollocate(u) -> Any
Interpolate closure force from volume centers to volume faces.
NeuralClosure.wrappedclosure Method
wrappedclosure(
m,
setup
) -> NeuralClosure.var"#neuralclosure#1"
Wrap closure model and parameters so that it can be used in the solver.
Filters
The following filters are available:
NeuralClosure.AbstractFilter Type
abstract type AbstractFilter
Discrete DNS filter.
Subtypes ConcreteFilter
should implement the in-place method:
(::ConcreteFilter)(v, u, setup_les, compression)
which filters the DNS field u
and put result in LES field v
. Then the out-of place method:
(::ConcreteFilter)(u, setup_les, compression)
automatically becomes available.
Fields
NeuralClosure.FaceAverage Type
struct FaceAverage <: NeuralClosure.AbstractFilter
Average fine grid velocity field over coarse volume face.
Fields
NeuralClosure.VolumeAverage Type
struct VolumeAverage <: NeuralClosure.AbstractFilter
Average fine grid velocity field over coarse volume.
Fields
NeuralClosure.reconstruct! Method
reconstruct!(u, v, setup_dns, setup_les, comp) -> Any
Reconstruct DNS velocity u
from LES velocity v
.
NeuralClosure.reconstruct Method
reconstruct(v, setup_dns, setup_les, comp) -> Any
Reconstruct DNS velocity field. See also reconstruct!
.
Training
To improve the model parameters, we exploit exact filtered DNS data
or the a posteriori loss function
where
NeuralClosure.create_callback Method
create_callback(
err;
θ,
callbackstate,
displayref,
displayfig,
displayupdates,
figfile,
nupdate
)
Create convergence plot for relative error between f(x, θ)
and y
. At each callback, plot is updated and current error is printed.
If state
is nonempty, it also plots previous convergence.
If not using interactive GLMakie window, set displayupdates
to true
.
NeuralClosure.create_dataloader_post Method
create_dataloader_post(
trajectories;
ntrajectory,
nunroll,
device
)
Create trajectory dataloader.
NeuralClosure.create_dataloader_prior Method
create_dataloader_prior(
data;
batchsize,
device
) -> NeuralClosure.var"#dataloader#40"{Int64}
Create dataloader that uses a batch of batchsize
random samples from data
at each evaluation. The batch is moved to device
.
NeuralClosure.create_loss_post Method
create_loss_post(
;
setup,
method,
psolver,
closure_model,
nsubstep
)
Create a-posteriori loss function.
NeuralClosure.create_loss_prior Function
create_loss_prior(
f
) -> NeuralClosure.var"#loss_prior#53"{_A, NeuralClosure.var"#51#52"} where _A
create_loss_prior(
f,
normalize
) -> NeuralClosure.var"#loss_prior#53"
Return mean squared error loss for the predictor f
.
NeuralClosure.create_relerr_post Method
create_relerr_post(
;
data,
setup,
method,
psolver,
closure_model,
nsubstep
)
Create a-posteriori relative error.
NeuralClosure.create_relerr_prior Method
create_relerr_prior(f, x, y) -> NeuralClosure.var"#54#55"
Create a-priori error.
NeuralClosure.create_relerr_symmetry_post Method
create_relerr_symmetry_post(
;
u,
setup,
method,
psolver,
Δt,
nstep,
g
)
Create a-posteriori symmetry error.
NeuralClosure.create_relerr_symmetry_prior Method
create_relerr_symmetry_prior(; u, setup, g)
Create a-priori equivariance error.
NeuralClosure.train Method
train(
;
dataloader,
loss,
trainstate,
niter,
callback,
callbackstate,
λ
)
Update parameters θ
to minimize loss(dataloader(), θ)
using the optimiser opt
for niter
iterations.
Return the a new named tuple (; opt, θ, callbackstate)
with updated state and parameters.
NeuralClosure.trainepoch Method
trainepoch(
;
dataloader,
loss,
trainstate,
callback,
callbackstate,
device,
noiselevel,
λ
)
Update parameters θ
to minimize loss(dataloader(), θ)
using the optimiser opt
for niter
iterations.
Return the a new named tuple (; opt, θ, callbackstate)
with updated state and parameters.
Neural architectures
We provide neural architectures: A convolutional neural network (CNN), group convolutional neural networks (G-CNN) and a Fourier neural operator (FNO).
NeuralClosure.cnn Method
cnn(
;
setup,
radii,
channels,
activations,
use_bias,
channel_augmenter,
rng
)
Create CNN closure model. Return a tuple (closure, θ)
where θ
are the initial parameters and closure(u, θ)
predicts the commutator error.
NeuralClosure.GroupConv2D Type
struct GroupConv2D{C} <: LuxCore.AbstractLuxLayer
Group-equivariant convolutional layer – with respect to the p4 group. The layer is equivariant to rotations and translations of the input vector field.
The kwargs
are passed to the Conv
layer.
The layer has three variants:
If
islifting
then it lifts a vector input(u1, u2)
into a rotation-state vector(v1, v2, v3, v4)
.If
isprojecting
, it projects a rotation-state vector(u1, u2, u3, v4)
into a vector(v1, v2)
.Otherwise, it cyclically transforms the rotation-state vector
(u1, u2, u3, u4)
into a new rotation-state vector(v1, v2, v3, v4)
.
Fields
islifting
isprojecting
cin
cout
conv
NeuralClosure.gcnn Method
gcnn(; setup, radii, channels, activations, use_bias, rng)
Create CNN closure model. Return a tuple (closure, θ)
where θ
are the initial parameters and closure(u, θ)
predicts the commutator error.
NeuralClosure.rot2 Function
rot2(u, r)
Rotate the field u
by 90 degrees counter-clockwise r - 1
times.
NeuralClosure.rot2 Method
rot2(u::Tuple{T, T}, r) -> Union{Nothing, Tuple{Any, Any}}
Rotate vector fields [ux;;; uy]
NeuralClosure.rot2stag Method
rot2stag(u, g) -> Any
Rotate staggered grid velocity field. See also rot2
.
NeuralClosure.FourierLayer Type
struct FourierLayer{D, A, F} <: LuxCore.AbstractLuxLayer
Fourier layer operating on uniformly discretized functions.
Some important sizes:
dimension
: Spatial dimension, e.g.Dimension(2)
orDimension(3)
.(nx..., cin, nsample)
: Input size(nx..., cout, nsample)
: Output sizenx = fill(n, dimension())
: Number of points in each spatial dimensionn ≥ kmax
: Same number of points in each spatial dimension, must be larger than cut-off wavenumberkmax
: Cut-off wavenumbernsample
: Number of input samples (treated independently)
Fields
dimension
kmax
cin
cout
σ
init_weight
NeuralClosure.fno Method
fno(; setup, kmax, c, σ, ψ, rng, kwargs...)
Create FNO closure model. Return a tuple (closure, θ)
where θ
are the initial parameters and closure(V, θ)
predicts the commutator error.
Data generation
NeuralClosure.create_io_arrays Method
create_io_arrays(data, setup) -> NamedTuple
Create
NeuralClosure.create_les_data Method
create_les_data(
;
D,
Re,
lims,
nles,
ndns,
filters,
tburn,
tsim,
savefreq,
Δt,
method,
create_psolver,
backend,
icfunc,
processors,
rng,
filenames,
kwargs...
)
Create filtered DNS data.
NeuralClosure.filtersaver Method
filtersaver(
dns,
les,
filters,
compression,
psolver_dns,
psolver_les;
nupdate,
filenames,
F,
p
)
Save filtered DNS data.